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Abstract What is Scanning Polarization Force Microscopy?

A non-contact scanning probe technique — Scanning Polarization Force Microscopy SPFM is a non-contact scanning probe technique that offers the capability
(SPFM)— was successfully implemented for the study of the wetting properties of of measuring the topography of liquid films or droplets and soft materials.
liquids on the surfaces of solid materials, at the micro- and nanoscale. SPFMrelies It relies on the measurement of electrostatic interaction (polarization)
on the measurement and control of the electrostatic force between a conductive forces between a conductive AFM tip and the studied surface. As the
AFM cantilever and the investigated surface. Micro- and nanodroplets of glycerol electrostatic interaction has a longer range compared to the van der Waals
were deposited on solid substrates (mica, graphite, silicon, silicon dioxide) and interaction, the tip is able to follow the surface topography at a larger
imaged via SPFM. The technique allowed the direct measurement of the contact distance than in conventional AFM. SPFM can be used to study the wetting
angle and the study of its dependence on droplet size. properties of liquids, the topography of biological materials etc.
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The AFM / SPFM laboratory of our Center was developed around a home-built advanced SPM system, which is currently driven by a state-of-the-art
controller and is capable of: “classical” AFM (contact, non-contact, intermittent contact), STM, MFM, I-AFM (current AFM), SPFMand much more.

Study of the wetting properties of liquids

— Substrate holder

Contact angles Deposition of glycerol micro- and nanodroplets
Substrate
For macroscopic droplets, ‘ Glycerol droplets were created on the substrates by condensation: the substrates
the contact angle 0, is 3 were held upside down inside a Berzelius glass containing heated glycerol, at a height
defined as the angle at which of ~¥5 mm above the liquid surface. After a few seconds the surface of the substrates
the liquid meniscus meets achieved a “foggy” appearance, which proved the presence of microscopic droplets.
the substrate, measured
through the liquid.

Glycerol vapor

Heated glycerol

Optical analysis of deposited glycerol droplets

For microscopic droplets, the
liguid meniscus does not
meet the substrate at a
precise angle and the profile
of the droplets has two
inflexion points. The slope at
these inflexion points gives
the effective (microscopic)
contact angle 0.

silicon native SIO, bulk SiO,
For microscopic droplets, the relation between the effective
(microscopic) contact angle, the macroscopic contact angle, the
height of the droplets (e), the potential energy between the

interfaces (P) and the surface tension of the liquid (y) is given by
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Hence, the dependence of surface potential energy with height,
P(e), can be calculated after determining from experimental
measurements the dependence of contact angle on droplet

height, 6(e).

Visualising glycerol micro- and nanodroplets by SPFM
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Line-cut profiles of the droplets
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Direct calculation of the microscopic
contact angle 0 and determination of its
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